Search results

Search for "carbazole polymer" in Full Text gives 2 result(s) in Beilstein Journal of Organic Chemistry.

Chemical syntheses and salient features of azulene-containing homo- and copolymers

  • Vijayendra S. Shetti

Beilstein J. Org. Chem. 2021, 17, 2164–2185, doi:10.3762/bjoc.17.139

Graphical Abstract
  • 141–144 was low compared to all-azulene-carbazole polymer 140 due to the electron transfer from azulene to benzothiadiazole and, due to this, they exhibited better electrochromism. An electrochromic device (ECD) constructed with polymer 143 exhibited black to transmissive electrochromism with high
PDF
Album
Review
Published 24 Aug 2021

3,6-Carbazole vs 2,7-carbazole: A comparative study of hole-transporting polymeric materials for inorganic–organic hybrid perovskite solar cells

  • Wei Li,
  • Munechika Otsuka,
  • Takehito Kato,
  • Yang Wang,
  • Takehiko Mori and
  • Tsuyoshi Michinobu

Beilstein J. Org. Chem. 2016, 12, 1401–1409, doi:10.3762/bjoc.12.134

Graphical Abstract
  • the PSCs were also different. The device based on 2,7-Cbz-EDOT showed better photovoltaic properties with the PCE of 4.47% than that based on 3,6-Cbz-EDOT. This could be due to its more suitable highest occupied molecular orbital (HOMO) level and higher hole mobility. Keywords: carbazole polymer
  • valence band (−5.45 eV) of the perovskite layer employed in this study. Accordingly, this carbazole polymer (2,7-Cbz-EDOT) is expected to be a better HTM in the PSCs as compared to 3,6-Cbz-EDOT. In order to evaluate this theory, PSCs with the Cbz-EDOT hole-transporting layer were fabricated, and the
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2016
Other Beilstein-Institut Open Science Activities